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Introduction
Host genetic factors related to COVID-19 susceptibility and out-
comes are of great interest, as their identification could elucidate 
the mechanisms of SARS-CoV-2 infection and severity, there-

by providing clues about potential therapeutic targets. Recently, 
Zhang et al. (1) reported deleterious mutations in 13 candidate genes 
involved in type I IFN immunity to be associated with COVID-19 
severity. The authors reported a significant enrichment in predict-
ed loss-of-function (pLOF) variants in 659 severe COVID-19 cas-
es relative to 534 controls with asymptomatic or benign infection 
using a burden test under a dominant model of inheritance (odds 
ratio [OR] = 8.28 [95% CI 1.04–65.64], P = 0.01). In addition to 
the 9 pLOF variants in cases used in the burden test, they detected 
109 missense or in-frame indels and tested them experimentally 
in overexpression systems; 24 variants (including all pLOFs) were 
found to be hypomorphic and were detected in 23 patients of both 
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tions is not possible because the study design of 
Zhang et al. (1) does not permit a formal statistical 
comparison of the same variant types in cases and 
controls. Missense variants were reported as func-
tionally characterized in cases but not controls, so 
the counts of functionally compromised missense 
variants cannot be evaluated in a statistical test. 
We therefore performed association tests on all 
rare variation that is apparently functional, and 
specifically focused on pLOF variants, applying 
identical rules to case and control variants, as is 

appropriate in such analyses.

Results and Discussion
Our first cohort was recruited by the Columbia Universi-
ty COVID-19 Biobank (Tables 1 and 2). We performed exome 
sequencing of 1,153 cases of diverse ancestries; 480 of 1,153  
cases had severe COVID-19 that led to death or required intuba-
tion due to respiratory failure (Table 2 and Supplemental Methods; 

sexes and various ages (17–77 years). The authors reported the 
presence of 1 pLOF variant in controls but did not provide the total 
number of other functional variants, or whether variants identified 
in controls were experimentally tested. They concluded that rare 
deleterious variants in the TLR3-, IRF7-, and IRF9-dependent type 
I IFN pathway genes explain up to 3.5% of severe COVID-19 cases.

We aimed to replicate these findings using independent data 
sets. We note that an exact replication of all the reported associa-

Table 1. Study cohorts

COVID-19 cases Severe COVID-19 Mild COVID-19 Population controls
Columbia 1,153 480 673 9,589
Quebec 220 62 158 313
Saudi Arabia 237 148 89 0
Qatar 254 23 231 5,131
Total 1,864 713 1,151 15,033
  

Table 2. Cohort characteristics

Columbia University  
COVID-19 Biobank

Biobanque Québec  
COVID-19

Saudi Arabia  
COVID-19 Biobank

Qatar Genome Program  
COVID-19

Severe  
n = 480

Mild  
n = 673

Severe  
n = 62

Mild  
n = 158

Severe  
n = 148

Mild  
n = 89

Severe  
n = 23

Mild  
n = 231

Age
0–9 3 (0.62%) 9 (1.34%) 0 0 0 0 0 0
10–19 9 (1.88%) 5 (0.74%) 0 0 1 (0.68%) 2 (2.24%) 0 2 (0.87%)
20–29 5 (1.04%) 34 (5.05%) 2 (3.23%) 6 (3.80%) 0 15 (16.85%) 1 (4.35%) 57 (24.68%)
30–39 16 (3.33%) 66 (9.81%) 2 (3.23%) 10 (6.33%) 7 (4.73%) 36 (40.45%) 3 (13.04%) 75 (32.47%)
40–49 28 (5.83%) 60 (8.92%) 2 (3.23%) 13 (8.23%) 10 (6.76%) 23 (25.84%) 7 (30.43%) 45 (19.48%)
50–59 62 (12.92%) 124 (18.42%) 9 (14.52%) 27 (17.09%) 18 (12.16%) 4 (4.49%) 7 (30.43%) 37 (16.02%)
60–69 97 (20.21%) 137 (20.36%) 13 (20.97%) 20 (12.66%) 48 (32.43%) 8 (8.98%) 5 (21.74%) 11 (4.76%)
70–79 133 (27.71%) 130 (19.32%) 17 (27.42%) 24 (15.19%) 47 (31.76%) 1 (1.12%) 0 4 (1.73%)
80–89 89 (18.54%) 72 (10.70%) 11 (17.74%) 40 (25.32%) 17 (11.49%) 0 0 0
≥90 31 (6.46%) 23 (3.42%) 5 (8.06%) 15 (9.49%) 1 (0.68%) 0 0 0
Unknown 7 (1.46%) 13 (1.93%) 1 (1.61%) 3 (1.90%) 0 0 0 0

Sex
Male 288 (60.00%) 357 (53.05%) 44 (70.97%) 64 (40.51%) 100 (67.57%) 40 (44.94%) 13 (56.52%) 116 (50.22%)
Female 192 (40.00%) 316 (46.95%) 18 (29.03%) 94 (59.49%) 48 (32.43%) 49 (55.06%) 10 (43.48%) 115 (49.78%)

Ancestry
African 192 (40.00%) 272 (40.42%) 9 (14.52%) 21 (13.29%) 0 0 0 0
East Asian 10 (2.08%) 16 (2.38%) 6 (9.68%) 16 (10.13%) 0 0 0 0
European 27 (5.62%) 40 (5.94%) 45 (72.58%) 109 (68.99%) 0 0 0 0
Latinx 217 (45.21%) 289 (42.94%) 2 (3.23%) 5 (3.16%) 0 0 0 0
Middle Eastern 30 (6.25%) 52 (7.73%) 0 0 148 (100.00%) 89 (100.00%) 23 (100.00%) 231 (100.00%)
South Asian 3 (0.62%) 4 (0.59%) 0 7 (4.43%) 0 0 0 0
Admixed 1 (0.21%) 0 0 0 0 0 0 0

ComorbiditiesA

Diabetes 194 (40.42%) 214 (31.80%) 25 (40.32%) 45 (28.48%) 75 (50.68%) 11 (12.36%) 9 (39.13%) unknown
Kidney disease 111 (23.13%) 109 (16.20%) 11 (17.74%) 20 (12.66%) 15 (10.14%) 1 (1.12%) 2 (8.70%) unknown
Lung disease 139 (28.96%) 142 (21.10%) 14 (22.58%) 25 (15.82%) 18 (12.16%) 3 (3.37%) 2 (8.70%) unknown
Heart disease 132 (27.50%) 152 (22.59%) 14 (22.58%) 19 (12.03%) 20 (13.51%) 0 1 (4.35%) unknown
Cancer 131 (27.29%) 174 (25.85%) 5 (8.06%) 7 (4.43%) 5 (3.38%) 0 0 unknown

ALung disease: asthma, chronic obstructive pulmonary disease, interstitial pulmonary disease, primary pulmonary hypertension; heart disease: coronary 
artery disease and heart failure.
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We additionally tested 480 patients with severe disease 
against 673 patients with milder disease that recovered from 
COVID-19 without the need for intubation, and again observed 
no clear enrichment (OR = 1.45 [95% CI 0.02–113.51], P = 1). Sim-
ilarly, even when adding missense variants, we did not detect 
an enrichment (OR = 1.13 [95% CI 0.74–1.72], P = 0.6). We also 
looked for variants in the 13 genes that were listed as pathogenic 
or likely pathogenic in ClinVar but could not find any in our 480 
severe cases. Based on our power calculations, we have over 80% 
power to detect ORs of 5.5 or greater for rare pLOF variants at an α 
of 0.05. We are therefore well powered to replicate the findings by 
Zhang et al. (1) given their reported OR of 8.0 (Figure 1).

The second cohort included patients recruited by the Bio-
banque Québec COVID-19. In total, 533 participants underwent 
genome sequencing in partnership with the Canadian HostSeq 
project. This cohort included 62 severe COVID-19 cases with respi-
ratory failure requiring invasive ventilator support. The control set 
(n = 471) consisted of 158 individuals with mild COVID-19 that did 
not require ventilator support and 313 participants who were nega-
tive for SARS-CoV-2 by PCR. We tested for enrichment of pLOFs in 
the 62 severe COVID-19 cases compared to the 471 controls (Sup-
plemental Methods) but did not detect a single pLOF in any of the 
cases or controls, even when we used a more relaxed MAF thresh-

supplemental material available online with this article; https://doi.
org/10.1172/JCI147834DS1). In an attempt to replicate the findings 
by Zhang et al. (1), we performed a gene set–based collapsing-as-
sociation test stratified by ancestry (2) using 9,589 population 
controls of similar ancestries (Supplemental Methods). Although 
exposed asymptomatic individuals would be ideal controls, using 
population controls will have only a minor impact on power since 
only a small proportion of exposed individuals develop severe dis-
ease. The COVID-19 Host Genetics Initiative has shown that this 
can be a valid and powerful strategy for host genetic discovery (3).

When testing for pLOF variants with an internal and exter-
nal minor allele frequency (MAF) of less than 0.001 in any of the 
13 genes of interest (Supplemental Methods), we did not detect 
any enrichment in cases (OR = 1.10 [95% CI 0.03–7.67], P = 1). In 
fact, only one of the cases and 23 controls had a qualifying pLOF 
variant (0.21% vs. 0.24%). The carrier frequency in controls was 
dependent on genetic ancestry ranging from 0% to 0.43% across 
different ancestral clusters. Interestingly, one of the pLOF vari-
ants reported by Zhang et al. in a case (1) was present in 3 of our 
controls (11-614300-G-A in IRF7; Table 3). Increasing the MAF 
threshold to 1% did not increase the number of qualifying pLOF 
variants. The addition of missense variants also did not improve 
enrichment (OR = 1.22 [95% CI 0.84–1.71], P = 0.3).

Table 3. Complete list of all qualifying pLOF variants found in 1,153 COVID-19 cases (673 mild and 480 severe) and 9,589 controls from 
the Columbia COVID-19 Biobank cohort

Gene Variant Effect HGVS_pA gnomAD  
exome AF

gnomAD  
genome AF

Phenotype Sex Ancestry  
cluster

TLR3 4-187004302-C-T stop_gain p.Arg488* 1.59 × 10–5 0 Control Female 0
TLR3 4-187005327-G-A splice_donor_variant 4.04 × 10–6 0 Control Male 3
TLR3 4-187005911-C-T stop_gain p.Arg867* 0 0.000159 Mild COVID-19 Female 1
TLR3 4-187005080-TAGAC-T frameshift_variant p.Thr751fs 3.98 × 10–5 0 Control Female 7
IRF7 11-613078-G-GA frameshift_variant p.Pro439fs 0 3.19 × 10–5 Control Male 0
IRF7 11-614300-G-AB stop_gain p.Gln198* 1.22 × 10–5 6.38 × 10–5 Control Female 0
IRF7 11-614300-G-AB stop_gain p.Gln198* 1.22 × 10–5 6.38 × 10–5 Control Female 3
IRF7 11-614300-G-AB stop_gain p.Gln198* 1.22 × 10–5 6.38 × 10–5 Control Female 3
TBK1 12-64879713-CAG-C frameshift_variant p.Val421fs 0 3.19 × 10–5 Control Male 2
TBK1 12-64882266-G-A splice_acceptor_variant 0 0 Control Female 4
IRF3 19-50165422-CCT-C frameshift_variant p.Arg255fs 1.19 × 10–5 0 Control Male 0
IRF3 19-50166771-CCTGGGG-C splice_acceptor_variant 0 0 Control Female 0
IRF3 19-50165291-AGCTCCTCGCTCACT-A frameshift_variant p.Val295fs 3.98 × 10–6 0 Control Female 3
IRF3 19-50165422-CCTGT-C frameshift_variant p.Asp254fs 1.59 × 10–5 0 Control Female 3
IFNAR1 21-34721850-G-A splice_donor_variant 1.26 × 10–5 0 Control Male 1
IFNAR1 21-34713304-G-T splice_acceptor_variant 0 3.19 × 10–5 Control Female 2
IFNAR1 21-34713304-G-T splice_acceptor_variant 0 3.19 × 10–5 Control Female 5
IFNAR1 21-34721439-G-A stop_gain p.Trp277* 1.2 × 10–5 0 Control Female 5
IFNAR2 21-34619194-CA-C frameshift_variant p.Leu128fs 8.03 × 10–6 3.18 × 10–5 Control Female 0
IFNAR2 21-34621013-G-A splice_acceptor_variant 8.45 × 10–6 0 Control Female 0
STAT2 12-56748597-G-A stop_gain p.Gln200* 0 0 Control Male 0
STAT2 12-56748365-G-A stop_gain p.Arg223* 0 6.37 × 10–5 Control Female 1
STAT2 12-56743896-C-T stop_gain p.Trp398* 0 0 Control Female 2
STAT2 12-56750297-TG-T frameshift_variant p.Gln20fs 3.98 × 10–6 0 Control Male 2
STAT2 12-56744928-G-A stop_gain p.Arg330* 0 0 Severe COVID-19 Female 8
AHGVS_p uses Ensembl canonical transcripts: TLR3-NST00000296795, IRF7-ENST00000397566, TBK1-ENST00000331710, IRF3-ENST00000601291, 
IFNAR1-ENST00000270139, IFNAR2-ENST00000342136, and STAT2-ENST00000314128. BReported in a case by Zhang et al. (1). Ancestry clusters: 0, 
European; 1, Hispanic/Latinx; 2, African; 3, European; 4, Middle Eastern; 5, Hispanic/Latinx; 6, Middle Eastern; 7, South Asian; 8, East Asian; 9, European.
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cases of severe COVID-19 compared to mildly affected patients or 
to ancestry-matched population controls.

These results are further corroborated by a recent analysis of 
exomes from participants in the UK Biobank performed by Regen-
eron Inc. (4). The association testing of 1,184 COVID-19 cases 
versus 422,318 controls showed no association between pLOF 
variants in these genes after careful adjustment for population 
stratification and multiple testing. Moreover, there was no associa-
tion signal when the tests were repeated to include rare deleterious 
missense variants, or when the case group was limited to severe 
COVID-19 cases (n = 471).

Between this study and the independent report by Regeneron 
Inc. (4), there were a total of 3,048 cases of COVID-19, including 
1,184 cases with severe disease used to test this hypothesis. Despite 
the large sample size, our collective results do not support the key 
conclusion by Zhang et al. (1) that 3.5% of severe COVID-19 cases 
are explained by rare inborn errors in type I IFN immunity genes.

The key differences between our study and the analysis by 
Zhang et al. (1) are summarized in Supplemental Table 1. Impor-
tantly, we have not undertaken any functional studies of mis-
sense variants identified in our cohorts. In contrast, Zhang et al. 
were able to validate 13.7% of missense variants in cases as LOF. 
Assuming the same rate in our cohorts, however, only 0%–1.5% 
of our severe cases would harbor an LOF variant, with Europeans 
showing higher rates compared with Middle Eastern individuals. 
Our results also demonstrate how important it is to properly con-

old of 1%. Similarly, we observed no significant enrichment under 
the missense model (OR = 1.24 [95% CI 0.36–3.46], P = 0.59).

The third cohort was recruited in Saudi Arabia and sequenced 
in partnership with the Saudi Genome project. Exome sequenc-
ing was performed in 237 unrelated patients with COVID-19 (148 
severe and 89 mild cases; Supplemental Methods). We could not 
find any cases with a rare pLOF or missense variant in any of the 13 
tested genes; even with a MAF of less than 1%, we could only find 
variants in mildly affected cases.

The fourth cohort was collected by the Qatar Genome Proj-
ect. Of 14,060 biobank participants with genome sequence data, 
700 patients had COVID-19, of which 60 were defined as severe 
cases and 640 were mild or asymptomatic (see Supplemental 
Methods). Limiting the analysis to unrelated individuals, there 
were 5,385 participants including 23 with severe and 231 with mild 
COVID-19. We did not find any severe cases with rare pLOF or 
missense variants (MAF < 1%) in the 13 genes analyzed.

In a meta-analysis of all 4 cohorts, we were also not able to 
detect any significant enrichment for pLOFs (OR = 1.10 [95% CI 
0.03–7.67], P = 1) or pLOFs and missense variants combined (OR = 
1.17 [95% CI 0.83–1.63], P = 0.34).

In summary, in our analysis of 4 international COVID-19 
biobanks including 1,864 COVID-19 cases (713 severe and 1,151 
mild), we could only find a single rare pLOF variant in a severe 
case and another one in a case with mild disease. We observed no 
enrichment in pLOF variants in type I IFN immunity genes among 

Figure 1. Power curves for a gene set–based 
collapsing test. Power calculations for the 
Columbia COVID-19 Biobank cohort of 480 
severe cases and 9,589 population controls 
were performed using the samplesizeCMH R 
package for a dominant model at α = 0.05 and 
a range of odds ratios. Results are shown for 
the pLOF model and the model including pLOF 
and missense variants. Because power is influ-
enced by the carrier frequency, we have ade-
quate power to detect effect sizes as small as 
1.5 for the model including missense variants 
compared with 5.5 for the pLOF-only model.
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Abedalthagafi, FSAH, LAS, and HEB performed phenotyping; A 
Almalik, BB, N Aljawini, N Albes, M Alaamery, MS Abedalthaga-
fi, FSAH, EAA, LAS, HEB, JJ, S Massadeh, and MSF performed 
sequencing; and A Almalik, BB, M Alaamery, MS Abedalthagafi, 
FSAH, EAA, LAS, S Mangul, and HEB performed genetic analyses. 
For the Qatar Genome Project, WAM, RB, AAT, and SII performed 
phenotyping and sequencing, and HM and CS performed genetic 
analyses. GP performed all cohort meta-analyses. MF performed 
genetic analyses for the Saudi Genome Project. GP, JBR, AGG, 
DBG, and KK prepared the manuscript. 
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trol for ancestry differences between cases and controls, as the 
frequency of rare variants highly depends on the ancestry of the 
individuals analyzed. Although the mean age of our case cohort 
is higher (65.9 years vs. 51.8 years in Zhang et al.), the age of vari-
ant carriers reported by Zhang et al. ranged from 17 to 77 years, 
and 75% of our cases are between 20 and 79. We also recognize 
that the inheritance pattern for deleterious variants in type I IFN 
immunity genes is often recessive, and that the penetrance of 
such variants might be dependent on male sex. However, Zhang 
et al. found biallelic variants only in a small number of cases and 
analyzed deleterious variants in both sexes jointly. Taken togeth-
er, our negative results suggest that the findings by Zhang et al. 
are not generalizable and highlight the need to rigorously adhere 
to accepted study design principles when reporting new genetic 
associations for a set of candidate genes (5, 6).

Methods
Supplemental Figure 1 depicts the full analysis workflow. More details 
are provided in Supplemental Methods.

Statistics. We used the 2-sided Cochran-Mantel-Haenszel test 
to test for an association between disease status and the presence of 
rare variants while controlling for ancestry-cluster membership. For 
subgroups within a single stratum, we used Fisher’s exact test. For all 
statistical tests, we report uncorrected P values, ORs, and 95% CIs. 
Because the main replication attempt involved a single test, we con-
sidered P values below 0.05 to be statistically significant.
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de Montréal. Recruitment of patients at the Jewish General Hospital 
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of participants from the Qatar Biobank (QBB) were approved by the 
Hamad Medical Corporation Ethics Committee in 2011 and continued 
with QBB IRB from 2017 onwards and renewed on an annual basis (pro-
tocol IRB-A-QBB-2019-0017). The genetic analyses were approved by 
the QBB IRB protocol E-2020-QBB-Res-ACC-0226-0130.
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